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Abstracl. Spinless fermions with local disorder and nearest neighbour repulsion are
investigated on a Bethe lattice with infinite branching. Two phases are studied: a
homogeneous phase and a checkerboard charge-density wave. Within this framework
the medel is exactly solved for all values of disorder, interaction and tcmperature.
The transition between the two phases is described in detail. The density of states
plw), critical interaction U, and order parameter b are calculated. The system displays
anomalous behaviour: away from half-filling particle-density fuctuations due to weak
disorder and/or low temperatures favour spontanecus symmetry breaking. We analyse
and explain this unconventional phenomenon.

1. Introduction

One of the most important objectives of condensed matter theory is to reach a proper
understanding of correlated, ie. interacting and/for disordered, fermionic systems.
Taken separately, correlation effects due to interaction and disorder already lead to
highly complicated problems. Their simultaneous presence naturally gives rise to even
more subtle effects. The majority of recent investigations of interacting disordered
electron systems are based on the theory developed for the Anderson localization
problem, ie. for disordered systems without interactions [1]. In this theory the initial
problem is mapped onto a field theory [2], which is investigated by renormalization
-group techniques. A generalization of this approach to the case of disordered
electrons {3] in the presence of interactions subsequently led to considerable insight
into the problem [4]; for a review see [1]. The formation of local magnetic moments,
which leads to serious complications in the application of the renormalization group,
was first recognized by Finkelshtein [5] and Castellani et af [6] in the framework of a
continuum mode! with disorder, and further developed in [7, 8. In the framework of
a Hubbard model with local disorder it was discussed in [9]. The jatter model was also
used by Ma [10] to study the phase diagram by means of a real-space renormalization
_group. Its strong coupling version, i.e. the {-J model with disorder, was investigated
by Zimanyi and Abrahams [11].

To gain a better understanding of the full interplay between disorder and
interaction effects an exactly solvable itinerant quantum model is desirable. Since
such a mode} is not available in finite dimensions d > 1 one would, at least, like to
construct a comprehensive mean-field theory which is valid for all input parameters,
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ie. interaction, disorder, temperature, particle density, etc. Such a mean-field theory
is, for example, provided by the solution of a lattice model in the fimit of high
dimensions or coordination number Z. This approach, which is well established
in classical statistical mechanics, has also recently been formulated for quantum
mechanical lattice models with itinerant degrees of frecdom [12]. In the limit Z— oo
microscopic many-body methods are greatly simplified, without becoming trivial (for
reviews, see {13, 14]). In particular, one can show [15] that (i) the ‘cohetent potential
approximation’ becomes the exact solution for the Anderson disorder model, and (ii)
in the case of interacting systems with a Hubbard-type Hamiltonian (without disorder)
only the Hubbard interaction remains dynamical, while all other interactions (e.g.
nearest neighbour interaction) reduce to their Hartree substitute [16), Indeed, in the
limit Z — oo the problem of interacting systems with Hubbard interaction becomes
a dynamical single-site theory [17, 18] which may be exactly formulated in terms of a
generalized coherent potential [17, 19].

As stated above it is our aim to study the interplay of disorder and interaction
for the full range of parameters by means of the limit Z — co. Since the Hubbard
model, even without disorder, remains very complicated in this limjt it is not the right
candidate. Therefore, we choose to examine a model of spinless fermions with nearest
neighbour interaction and site-diagonal disorder. In this modcl we know the solutions
of the limits of zero disorder and zero interaction, respectively. The model is indeed
exactly solvable in the limit Z — oo for all disorder and interaction strengths. This
enables us to calculate all relevant physical quantities, such as the density of states,
critical interaction, and so on, explicitly. The use of Z — co as an approximation of
a finite-dimensionai system has the advantage of treating disorder and interaction on
an equal footing, The arbitrariness, which enters when two of more expansions are
used, e.g. in the disorder and in the interaction or in the disorder and in e = d—2, 5
ruled out since only one approximation step is invelved. It is controlled by the small
parameter 1/2 so that systematic corrections are possible.

A model of interacting fermions without spin degeneracy may be useful in the
case of strongly polarized systems (e.g. in a lattice-gas description of He in a strong
magnetic field), as well as ferromagnetic (or ferrimagnetic) electronic systems where,
for example, the down-spin bands are filled and only an up-spin band needs to
be considered. The latter situation i8 realized in magnetite (Fe,0,), where the
lowest singlet spin-up band is half filled, lcading to metallic conductivity above a
temperature T, ~ 119K at atmospheric pressure. At T, the system undergoes the
Verwey transition into an insulator [20). Cullen and Callen [21,22] first suggested
a model of spinless fermions with nearest neighbour interaction without disorder to
describe this transition.

The model itself can be solved exactly in = 1 [23,24]. In d = 1 and for
half filling the solution describes a tramsition from a homogencous to a charge-
density-ordered phase ar a finite value of the interaction. This is also borne out in a
variational treatment, using a Gutzwiller wavefunction plus Gutzwiller approximation
[25). The transition was discussed in detail by Shankar [26], who also calculated
various response functions and gave a qualitative argument concerning the effect of
disorder on the transition. According to his argument arbitrarily weak disorder will
destroy the interaction-induced energy gap. A transition to a charge-density-ordered
state at a finite interaction turns out to be a peculiarity of the dimension d = 1 [27].

For 4 > 1 and half filling on a bipartite lattice the transition is shifted to
arbitrarily small interactions, as may be expected from the perfect-nesting property.
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This is important for our investigation since the Hartree solution of the model without
disorder {which becomes exact for Z — o0) also has this feature, A straightforward
generalization of Shankar’s disorder argument to higher coordination numbers reveals
that a non-trivial competition between interaction and disorder is present for d = 2.
Hence, the mean-field solution already correctly describes two important aspects of
the exact solution in finite dimensions d = 2,3, at least qualitatively.

The paper is organized as follows. The model and details of the perturbational
treatment are given in section 2. In sections 3 and 4 our results for the density of
states and the phase transition line critical interaction against filling are shown. We
interpret our findings in section 5. In section 6 the critical behaviour across the phase
transition is examined while the discussion in section 7 concludes the main part of
our article.

2. Model

The basis of our investigations is a tight-binding Hamiltonian for spinless fermions
with nearest neighbour hopping, local disorder and ncarest neighbour repulsion
(screened Coulomb interaction)

A= Z(e ~ )iy +Ziu e+ 3y Uy, ah; 1)
iJ

where &} (é;) are the creation (destruction) operators for fermions on site i,
i, = "+“ and U, ijrliy = 0 if 4,7 are not nearest ncighbours. For the model to
remain non-trmal in the limit of high coordination numbers, Z — co, the hopping
matrix elements and the interaction matrix elements are scaled as i, := —¢t/v'Z and
U,; = U/Z, respectively [12, 16]. The energy ¢; is a stochastic variable drawn from
some local, site-independent distribution function P(e). The chemical potential is p.

In our investigation we choose to work on a Bethe lattice with branching
K = Z — 1. This has the advantage that in the limit K — oo the density of states is
exactly given by a half ellipse, whereby explicit analytic calculations are made possible
[15,28]. In the case of the one-particic quantities to be calculated below, the peculiar
properties of the Bethe lattice (absence of loops, etc) do not lead to unphysical
features. The most important aspect of the lattice in the correlation probiem under
investigation, namely the bipartite structure, is equally provided by the Bethe lattice.

To tackle the problem set out above we will proceed as follows. First, an equation
of motion is constructed using Green functions in a locator representation. Then,
writing the space-diagonal Green function (full locator) in terms of a renormalized
perturbation expansion, the limit of large branching is taken. Finally, we formally
resum the diagrammatic series to obtain a closed system of equations. Throughout

this paper we will work in units of k=1, kg = 1and t/vVK = 1

21, Perturbation technigue for K — oo

The one- and two-particle imaginary-time Green functions are defined by

G, 734, 75) = —<T6;(Tz‘)3}'(""j)> (2a)
Gli,rin, Taidy T3, T ) = (T &(1,) 8,(7,) & (7;) &L (7)) (2b)
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Here () indjcates the quantum mechanical ensemble average at finite temperature.

The ensemble average with respect to the disorder of some physical quantity X i
given by

X := Hfde,. Ple)X(ey-onr€yy.nu). (3)

Using standard techniques [29-31] an equation of motion or the Green function
is obtained. With Gy;(2;) and G, ;. (2,2,,2,) as the Fourier transforms with
respect to time of (2a) and (2b), respectively, we find

G:J(zl) - g;(zi)6=_7 +Zg (ZJ)t;quJ(zI)

+3 67 Zg?(Zr)Uqusm( 21,200 2,) )
q s
where z; = p + iw,; and w; = w(2{ + 1) /6. For the bare locator, g%(z,), we have
i
{} —_
gi(z) = 7 — <. &)

1

The two-particle Green function appearing in (4) depends only on three frequencies
because explicitly time-dependent fields are absent in (1). The inverse temperature
is denoted by 3 and the variables r, s run over all integers. Figure 1 is the pictorial
representation of (4). It illustrates how the perturbative terms (hopping, interaction)
appear, and how the different frequencies {(z,, z,, z,) and sites (¢, q, j) are related.

X x =) x

i ' a ¥
1 ' ,
! ' . Spulp=2y 2
—fs Z L T fp——— e
J : i J ¢ i § i i

Figure 1. Diagrammatic representation of the equation of motion, One-particle Green
function: fat line with full amrow, hopping amplitude: thin line with full arrow; bare
locator: broken vertical line with cross; two-particle Green function: two fat lines with
shaded square; nearest neighbour interaction: wavy curve.

In the same way one can construct an equation of motion for qu(zf, rrZg)
This equation does not contain irreducible three-particle vertices. Thus, by expansion
of the latter equation and (4), the explicit perturbation expansion in terms of
gi(2)), t; and U, is obtained. Subsequently we consider the space-diagonal
element of the Green function, ie. the ‘full locator’ g;{z,) == G;(2;). For g,(z;)
we writc down an expansion in such a way that, of all perturbation terms mentioned
above, those with a contribution from a given site, say 7, are isolated. Formally this
can be written as

gi(z;) = gi(z)) + o¥( ) Ti(21)g;(z;). {6)
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Figure 2. Expansion of the full locator (indicaicd by the full vertical line with a cross)
in terms of the self-energy; (a) bare locator; contribution to the perturbation via (b)
hopping, (c) interaction and (d} combination of hopping and interaction.

The essential point of (6) is that ¥,(z;) does not depend on €;. An expansion of (6)
is given in figure 2. In figure 2(b) two hopping amplitudes connect g with the rest of
the locators; in figure 2(c) this role is played by the interaction. Finally, figure 2(d)
gives an example of a combined effect.

At this point we introduce the limit of infinite branching, K —co. In analogy to
the simplifications for infinite dimensions discussed for nearest neighbour interactions
by Miller-Hartmann [16] and for disordered systems by Vlaming and Volihardt [15],
we have a dramatic reduction of terms in the cxpansion (6), represented in figure 2.
In fact, from the terms given in figure 2, only figures 2(a-c) remain. In particular,
diagrams containing irreducible contributions in the disorder and the interaction, such
as figure 2(d), vanish in the limit K — oo. This conclusion is apparent from figure 2.
Each hopping integral contributes a factor A~'/2, each interaction contributes a
factor K~ and each sum over free sites contributes a factor X. For the diagrams
in figures 2(b, c) this results in K~V2K-12K ~ 1 and K~1K ~ 1, respectively.
However, figure 2(d) gives K~V2K-V2 -1 ~ K-1, thus it vanishes in the limit
K — oo. From this example we learn that the self-energy ,(z;) decouples into wo
independent contributions. For the full locator we write

9;=9?+9?°’i9i+9?3595 7

where the z;, dependence is suppressed for clarity. The sclf-energy o;(z;) results
from the perturbation in the hopping, the self-energy s; from the perturbation in the
interaction. Physically, a particle at site 7 is subject to two additive effective potentials,
one due to the disorder, the other due to the interaction, both originating from the
surrounding system. This is a typical mean-field property.

Making use of the renormalized perturbation expansion [29] for a Bethe lattice
the self-cnergies are simply given by

o (z) = zt;'j 9;(5)("-’13 i N (8a)
J

s; =871 % Ui 9592, (8)
T :

The superscripts representing a site with a minus sign imply that the locator does
not depend on the cnergy of that particular site. Since in the limit K — oo only
Hartree diagrams for the nearest neighbour interaction remain, the related self-
energy, s;, is frequency independent, This is an exact, albeit special, and highly
simplifying feature of our model for X — co. The equations (8) introduce a new
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locator, gj‘("), which has an expansion like (7). In such an expansion site ¢ must

be excluded everywhere, thus leading to new self-energies cr;-'(i) and sJ.'("), etc. In
the next subsection we will explain how this hierarchy of equations can be closed by

averaging over the disorder.

2.2, Introduction of two different phases

On every bipartite lattice, i.e. a lattice of A-B structure, there are at least two
possible phases depending on the interaction strength. For U = 0 the system is in the
homogeneous phase, which implies that the averaged full locator is site independent.
On the other hand, for U *» 1 the checkerboard phase or charge density wave (CDW)
is more favourable from the energetic point of view. For intermedijate interaction
strengths, U/ = 1, the situation s not & priori clear.

A part of a Bethe lattice for &' = 2 is shown in figure 3. It is important to

recognize that in the limit & — co one has g; = g7 "/, where (.) may stand for any

finite number of sites [15]. This is clear in the spccial case g7 = g; @) because site j
is only one of the K + 1—co neighbours of site 7.

Figure 3. Part of a Bethe lattice with &' = 2. Sites Z, j, & and ! form a path along
which the local electron filling alternates. Sites i and k! low filling, and sites j and I:
high filling,

Suppose the system is jn a homogeneous phase at U = 0; then we have g; = g

for ail 4,5. One may equally write g7 = g7 ") as was illustrated above (see figure 3).
The latter equation can be used directly in (8a). Averaging (7) leads to the quantities
&; and 5. Since the filling is kept constant the site-independent self-energy =7 mierely
shifts the chemical potential, thereby ruling out any effect of the interaction. Now
suppose the system is in the checkerboard phase, U > 1; then all points on each of
the sublattices A,B are equal, Le. Ty = Trc, and G, 5 = G  (See also figure 3).

As mentioned above, for general U we do not rigorously know the structure of
the most favourable phase. Since this information has to be put in by sand, we restrict
ourselves to the simplest symmetry extension and assume a checkerboard phase. Thus
we make the following ansatz:

u=T=g = ’ (%)

el
gL = g; =gt()=‘“ (90)
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where the roman indices U (upper) and L (lower) energetically distinguish between
the two sublattices. The sublattice L is that sublattice on which an electron when
added to the system, has the lower interaction energy. Note that this is the sublattice
with the higher electron filling. For sublattice U the opposite applics. In figure 3 this
feature is clarified using small and big dots representing the filling at each site.

For gy = g, we recover the homogeneous phase and the phase with g # g we
will simply call cDw. Equations (9) close the hicrarchy indicated above, albeit on a
higher level. Algebraic manipulations, making use of (7)—(9), lead to

g?(z’-‘:’)
— g3(z)) (oy(z)) + sy)

gulz) = /dfi P(e;) 1

oy(z) = gl{z) sy = %ZQL(%)

HEN
1- g2 oz} + s1)

(10)

gy (zp) = /dej P(e;)
U
o (z;) = gulzy) sp = EZQU(Zr}'

We now switch to real frequencies w by analytic continuvation. The filling of the upper
and the lower sublattice, respectively, is given by

nu = —ge [ dw Im{gy ()} () | an

where fp(w) = [exp(B(w — u)} + 17! is the Fermi distribution. The total filling n
and the order parameter & are defined by

Cn= Yy + ny) (122)
b= %(ﬂL - nu). (].Qb)
In the homogeneous phase we have b= 0, while in the cOW phase b may vary

between O and 1.
We now choose the disorder distribution to be semi-elliptic:

P(e) = %,/1 _ &4y | (13)

where 4,/% is the width of the distribution. The main motivation for this choice
is that it contains only a single parameter and that the integrals remain tractable.
Inserting (13) and (12) in (10) we obtain
1oyt —(w—g. - B)gy+1=0 (14a)
yol-(w-gy+A)g+1=0 (140}
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Figure 4. DOS in the cOW phase for A = 0.5. For 4 = 0 the D0S consists of two bands,
and diverges at w = --0.5 {asymptole indicated by thin broken line). For v = 0.1 the
band gap has become smaller and the divergence is smeared out. For - = 0.4 the two
bands have merged.

where A := Ub and the chemical potential has been renormalized as gy — ¢ + Un.
The latter merely indicates that u is shifted by the interaction to keep n constant.
Using (12) and (11), and the definition of A, one finds

nB == [ 32 0 (o) + qu(e)}fr(w) (150)

-1
U(g,~y) = “A(/ = Im {gp(w)— QU(""’)}fF(w)) . (156)

For given ~ and 8 one has to find values for 4 and A such that n(8,~)} and U(3,7)
equal n and U for the system under investigation. In this sense (14) and (15) form
a self-consistent system. These equations are the central ones in our paper.

3. Density of states

There are four different situations, depending on the values of + and A.

(i) For v = 0,A =0, ie. free electrons on a Bethe lattice with infinite branching,
the DOS is known to be semi-elliptic [29]. This also follows from (14) which is a
quadratic equation in g{w), defined as

g(w) = (g (w) + gy(w)) (16)

because gy(w) = gy (w)-

(i) In the homogeneous state with finite disorder (v # 0, A = 0) equation (14)
remains quadratic in g(w), but the DOS broadens by a factor /1 -+ .

(iii) In the CDW state without disorder (y = 0 and A # 0) we have gy (w) #
gr.(w), but the equation for g{w) remains quadratic. The retarded Green function
for the lower sublattice is

w—A i fw—A S e
= s 4-w?
e e T an
and for the upper sublattice one has gy(w) = gr(w)a__a- The DOS for the lower
sublattice is plotted in figure 4. It displays the existence of two bands with a bandgap
of 2A. The bands extend from —A to —/AZ + 4 and from A (o \/Az +4 w1th q
divergence at w = —A.,
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(iv) The most complicated situation arises for the CDW state in the presence of
disorder (v # 0, A # 0). Equation {14) can be rewritten as

[4v2 (7 4 D]g*(w) + [~4or(2y + D]g*(w) + [4v2 4 (5 — ALy (¥ — A)] g¥(w)
+ [w(A? - o — dy)]g(w) + wP = 0 (184)

1 —__gw)A

2(gL(w) — gy(w)) = "o =279 (182)
Equation (18) provides the overali DOS, while the DOS of the sublattices is found
from (185). Although (18e) allows for several complex solutions the requirement
Im {g, (w)} €< 0and Im {gy(w)} € 0 determines a unique solution for any allowed
w,v and A. In figure 4 the DOS for the iower sublattice is plotted for A = 0.5
with v = 0.1 and ~ = 0.4, respectively. The divergence at w = —A disappears for
finite . For larger values of « the two subbands merge. The symmetry of g(w); Le.
g(—w) = g(w), implies that the bands merge at «w = 0. To find the critical value A
for which A the bands merge the solutions of (18a) have to be examined for w = Q.
One finds

2
A= FT @9

The existence of such a critical A can be understood as follows. A strong
interaction leads to a phase transition from the homogeneous phase to the CDW;
the larger U is, the bigger the energy diffcrence between the bands will be. On the
other hand, disorder generally leads to broadening of a band, so that, if the disorder
is large enough, the zero-energy states are accessible for the electrons. These effects
compete so that a critical A, which depends monotonically on the disorder, must
exist.

4. The phase transition line

In this paragraph we determine in the critical interaction value U, for which the
phase transition appears. U, depends on the disorder, the temperature and, through
the chemicai potential u, on the filling. By taking A — 0 in (14) and (15) one finds

YV e A F D)~ ot
n(a.)= [ 52 IR ) (200)

2/7+1 —_— -1
Uc(ﬁ,v)=(f 7w wyay 4 1) sz(w)) . e

—2/77 27 Wiy - 1) —4y?

In the subsequent subsections we shall discuss (20} for different values of 3 and ~.
Furthermore, the case of half filling and the empty band limit will be investigated.
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4.1. Zero temperature and finite disorder

In the limit of zero tempcrature, 8 — oo, explicit integration of (20) is possible and
we obtain

7(0,7) = gty AT+ D= 42+ £ oo™ (—2,——,;‘_”) (21a)
U, (c0,v) = 27 {[4(1 4+ 7) — w32 Hy )} ! (210)

where we made use of an auxiliary function:

—1/R 4 (R M2+ h)/(2-h)] v <1

Hip,v) =4 % : =1 (22a)
1/h* = (2/h%)tan~1(1R) ¥ > 1
hoi= (11— y|(41 + ) — )2 (225)

The Fermi level must fulGll the constraint |p| € 2/ + 1. In figure 5 U, is
plotted against n for different values of the disorder. For vanishing disorder the
logarithmic term In(2 — /4 — 42) remains so that the behaviour at u — 0, ie.
at half filling, is singular. This is thc so-called perfect-nesting singularity, which
results from the Jattice being bipartite. Away from half filling it disappears like .
U, ~ —x flIn(n(n — 1)/4) + 1]. In the samc way this divergence disappears if the
disorder is small (but finite), namely like U, ~ —# /[In{~/2) + 1].

In figure 3 several interesting effects of the disorder can be observed. Comparing
the curve for v+ = 0 with v = 0.i we see that thcy intersect for n = (.43,
Qualitatively, this holds for any two curves with different disorder strength. To
describe this phenomenon we introduce the filling n, () at which two U_ against n
curves, which differ only by d- in the disorder, intersect. From figure 5 we learn that
by varying v — - + d~ at flling n < n,(~) the critical interaction U, decreases,
whereas at filling n > n, () an increase of U, occurs. The behaviour in the region
n < n,(~v) may be called ‘anomalous’ {compared with the conventional situation)
because the disorder favours the COW phase in this region. Thus n,(~) is the filling
that separates anomalous from conventional disorder dependence, For increasing
disorder n,{v) decreases so that the anomalous region becomes smaller. A detailed
investigation of the latter observation is given in appendix A.

An explicit example may shcd some light on this unusual behaviour. Let us
consider a system that has a filling »* and an interaction U* as indicated in figure 5.
In a sample with low disorder this system is in the homogeneous phase. If the
disorder is somewhat stronger, v = 0.1, the system displays a CDW structure and
for a strongly disordered system, ~ > 0.5, the system is in the homogeneous phase
again. Reappearance of the homogeneous phase is not surprising because for strongly
disordered systems the disorder domipnates. Thus, for any (finite) filling n > n,, a
certain value of the disorder exists from which on the U, against n curves ars
‘ordered’, ie. U(oo,v,) > Ufoo,v,) if v > v,

4.2. Finite temperature and zero disorder

In figure 6 U, is plotted against »n for various values of the temperature at zero
disorder (v = 0). In the limit 5 = oo we recover the curve in figure 5 for



Anomalous effects in disordered spinless fermions

t

S e L
SEERE
| oS00
[ cow—o

SClas s laaralyav el

Figure 5. Critical interaction against filling for
various disorder strengths {zero temperature), A
system with filling n* and interaction U* shows
anomalous behaviour with respect to the disorder.
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Figure 6 Critical interaction against filling for
various temperatures (zero disorder). A system
with filling »* and interaction U* shows anomalous
behaviour with respect 1o the temperature.

4 = 0. For small (but finite) temperatures the perfect-nesting singularity disappears:
U~ /[In(88/x) + C — 1]), where C =~ 0.5772 is Euler’s constant [32]. :

Furthermore, an anomalous behaviour similar to the situation where only disorder
was present can be observed. The curves with 3 < 1 displayed in figure 6 for different
temperature intersects. Thus we introduce the filling » ,(3) at which two U, against
n curves intersect which differ only by dT in the temperature. Thus, by varying
T — T+ dT at filling n < n,(B3) the critical interaction U, decreases, whereas at
filling n > n,(A) an increase of U, takes place (see figure 6). The region 7 < n,(3)
is anomalous because the temperature fluctuations favour the CDW phase. The filling
n,(/3) separates between the regions of conventional and anomalous behaviour with
respect to the temperature. For increasing temperature n,(8) decreases so that the
anomalous region becomes smaller. This will be investigated in appendix A.

To clarify this point we take a specific example with »n*,U* as indicated in
figure 6. For zero temperature this system is in the homogeneous phase. When the
temperature is increased a phase transition takes place and for 3 = 4 the system i
in the cDW phase. If the temperature is increased further, 8 > 2, the system turns
to the homogeneous phase again. The latter is to be expected since, for high enough
temperatures, these fluctuations dominate the system.

4.3. Finite temperature and finite disorder

Finally, we have to discuss the situation with finite disorder and finite temperature,
ie. 8 # co, v # 0. For this situation we have to extend the definitions of n ,(-y) and
n,(B) to nﬁ(*{) and n}(3), respectively. The superscript indicates the parameter
that is kept constant. In figure 7 U, curves are given for different values of 3 and ~
(using equation (20)). For legibility U_n, rather than U, itself, is plotted against n.
In this way the divergence of U, for n — 0 i5 compensated. This has the advantage
that one can easily detect any intersection since U,n is bounded. The number of
intersections, and thus the sequence of the curves for fixed filling, is not affected by
this type of plot so that conclusions regarding the existence of anomalous behaviour
can still be drawn.
Comparison between the figures 5, 6 and 7 shows the following.
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Figure 7. Plots displaying the global behaviour of the critical interaction. (a) Fixed
disorder at various lemperatures, intersections disappear for increasing disorder. (b)
Fixed temperature at various disorder strengths. The intersections do not disappear for
increasing temperature and shift to the right (empty band).

(i) There exist two particular temperatures Ty, and Ty, (see figures 6 and 7(a)),
which are defined by the following properties, The phase transition of a given system
at a temperature T > T, is conventional. For T' < Ty, an anomalous transition is
the generic case for low fillings. If the system is such that a phase transition occurs
at T > Tg then the system displays only conventional transitions. In figure 8 Ty,
and Ty, are plotted against the disorder. Note, that general conclusions regarding
the temperature T' < Ty, or T < Ty, cannot be drawn.

S —
nl

—_—— 7]

L3 ]

T 10 J

0.3 ]
0o T T BT . Y -

0.0 0.2 01 06 e 0.8

Y

Figure 8. The temperatures Ty and Ty against the disorder, ~, is situated where the
curves cul the abscissa.
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(ii) There exists a special value of the disorder, ., characterized by the
disappearance of the anomalous temperature behaviour (see figure 7(b)). For disorder
¥ 2 ¥o the system shows conventional behaviour at all fillings. In figure 8 ~., is the
value for which Ty, and T, vanish.

(iii) There exists no special value of the temperature at which the anomalous
disorder effect disappears fully (see figure 7(b)). For increasing temperature the
anomalous region decreases but does not vanish.

In appendix A a detaijled discussion is presented.

5. Physical picture

The anomalous behaviour found in the previous section has a very natural explanation
in terms of particle-density fluctuations. In the simplest situation, 8 = oo, v = 0, the
only free parameters are n and U. The competition between the potential and the
kinetic term in the Hamiltonian (1) allows for a phase transition. It is clear that for
low U (or for low filling, low U'n) the kinetic energy dominates the system so that it
is in the homogeneous phase. For very high U7 the potential term dominates, giving
Tise 10 a COW in the entire system. Thus there exists (at least) one critical U,.

At zero temperature, disorder has the following influence. At half filling the
perfect-nesting singularity disappears because the repulsion must cope with the
stochastic fluctuation of the site energies. Therefore, U_ cannot be zero at half filling.
Equivalently, disorder creates regions where higher or lower site energies prevail, so
that the density of electrons differs from half filling in these regions. Hence, a higher
interaction U, > 0 is needed to induce the phase transition.

Away from half filling we have the anomalous region n < n, (). Here the critical
interaction U/, decreases for increasing disorder. The key point is that the regions
of higher particle density are now closer to half filling. This greatly enhances their
tendency towards a phase transition greatly. In the regions of lower particle density
the tendency towards a phase transition is weakened but they are surrounded by
regions where a CDW is present or easily formed. These regions produce a symmetry-
breaking field acting on the surfaces of the regions of lower particle density. The
resulting ‘proximity’ effect eventually stimulates the phase wtansition in the whole
system.

At zero disorder, finite temperatures act, in principle, similarly since they also
induce particle density fiuctuations which are not present at T = 0 in the ground
state (eigenstate of the particle number operator). So it is not surprising that the
same behaviour as for disorder is found. Yet there is an important difference: the
disorder-induced fluctuations are static whereas the temperature-induced fluctuations
are dynamic. This difference is expressed in the existence of the sorting temperatures
T5 and Tg,. They provide evidence that the anomalous temperature behaviour is
suppressed at high temperatures. A coiresponding suppression of the anomalous
disorder behaviour is not observed.

According to the above discussion the combined regime does not produce
qualitatively new effects. As long as the fluctuations are weak they push the system
into the same direction, hampering the phase transition around haif filling and
favouring it for lower fillings. The difference between temperature and disorder
is revealed in the strong fluctuation regime; the anomalous temperature behaviour
is suppressed by strong (dynamic) particle density fluctuations due to temperature.
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This effect is enhanced by the presence of (static) disorder fluctuations as can be
seen from the monotonic decrease of Ty and T, with increasing disorder v (see
figure 8). In contrast to this, the regime where anomalous disorder behaviour occurs
is pushed to lower fillings by high temperature or strong disorder but never ceases to
exist.

6. Critical behaviour of the order parameter

To compute the critical bchaviour of the order parameter b as a function of the
interaction U, the disorder parameter v and the temperature 7, we use the self-
consistency equation (15) and expand it to second order in A. This shows that
in general the critical exponent is %, as can be expected from a mean-field theory.
Neither disorder nor temperature alter this fact.

The expansion of (13) yields

1
U

= B(n,A) = o L&

T 550, 0A% +0(A%) . 23)

The important point is the derivation at constant n, which is indicated by the argument
of the function C'(n,A) which is the inverse of the right-hand side of (15b). Let
C(u,A) be the corresponding function of p and n(p,A), ie. the function for the
particle number at given chemical potential. Both C(u,A) and E(n,A) depend
only on the modulus of A. The sign of A is of no importance in (15b). Then
‘5&.‘10(“ 0) is given by

i O(n0) = 5:00,0) — (. 0)) (2 C(wn0)) (%n(u,O))_l-(th)

In order to calculate the quantities introduced above we have to know the Green
function g, (z,A) up to third order in A, where z is a complex cnergy. The
derivatives of g; (z,A) at A = 0 can be calculated by repeated derivation of (14) and
the use of g; (z,A) = gy{z,—A). This task is straightforward. The intermediate
steps are given in appendix B.

For the following it is important to know that ai:,é"(n,O) exists. It is negative,
which is necessary for the ecxpansion to be meaningful. The only exception is half
filling (u = 0), zero disorder (v = 0), and zero temperature (T = 0). In this
case’ ai;gé(n,O) diverges and the expansion (23) breaks down. This case will be
investigated separately in the following section.

6.1. Critical interaction

For finite U, which is the generic case, equation (23) or equivalently

i( 2/U =2/U, )'/2

82C(n,0)/8A2 @)

implies

bx JU-U,. I ' (26)



Anomalous effects in disordered spinless fermions TI87

4_ T T T T T ¢.10
L v =0.0 ]
L ——— . =01 A
- _—— 1:0_5 4 0.08 7
3:‘ ______ =107 ]
LY mmewaen 7 =50 ] ]
1 0.06 .
F 2-- b M
N e ———————— 0.04 -
oL /____._.—- o h
oY, ]
1 T N R 0.02 7
0—:r|il||||1||||l!r||||11-- 0.0 ]
080 Bn2 4 6 8 10 8. 0.15

Figure 9. Order parameter 5(8,~) against Figore 10. Order parameter b(Jp,-y) against
temperatere T at fixed disorder 4o = 0.0 and  disorder /% at fixed temperature Fo = 100

filing n = 0.45 for different values of the and filling n = 0.45 for different values of the
interaction U: (a) U > Uc{oo,m): (b) U = interaction U: (a) U > U{f0,0); () U =
Ue{oo, Y0}, ©€) U < Ue(o0,70). Ue(B0,0), (€) U < Ue(B0,0).

So b, as a function of the next-neighbour interaction U, has the critical exponent %
in infinite dimensions. The only exception to this result occurs for U, = @ at zero
temperature, zero disorder and half filling, ie. u = 0. In this case we resort to (15)
“and (17):

U Via+al 2_ 2\ 2
= Ua dw (4""5—“”) @7

A==
2w Ja wi = A2

which yields A ~ (UA /7)[—In{A /8) — 1] in the regime of small A. In this case we
obtain for the critical behaviour

3 T
b.-—ﬁexp(—ﬁ—l). (28)
This is the generic result for U, = 0 in Hartree—Fock theory as is shown in a general
framework by Uhrig et af [33].

6.2. Critical lemperatures

We now address the critical behaviour of the order parameter b(3, ;) as a function
of the temperature T at fixed disorder ~,; Our numerical work shows that there
are three types of global behaviour of b(8,+,) at constant filling (see figure 9).
Curve (c) in figure 9 has two critical temperatures: one is conventional (Ty)} because
b(B,v) = 0 for T > Ty and the other is anomalous because b(3,v,} = 0
for T § T,. The necessary but not sufficient condition for this phenomenon
s U < Ugoo,vy). Curve (a) in figure 9 shows only one conventional critical
temperature; the curve is characterized by U > U (oc,y). Curve (b) in figure 9
marks the transition between curve (a) and (c) in the same figure for U = U (o0, ).
Since all functions on the right-hand side of (25) are differentiable in the temperature
at finite temperature, we have A o« /Ty — T and A o« /T — T, for T, > 0. Only
in curve (b) of figure 9 for T, = 0 we obtain a linear behaviour A oc T because the
low temperature expansion of 1/U_ contains only even powers of T.
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To conclude the discussion of the anomalous temperature dependence we state a
necessary condition for its occurrence

1 -

In= 413 300 = 31> 2| T2V e (o2 )| @)
This can be deduced from 8/3(T?)|, ,[U] "(co,v,) > 0. At first sight (29) is
only valid at 8 = oo, ie. for curve (b) in figure 9. But (29) can be extended to
general temperatures since curves (b) and (c) in figure 9 differ only in their value
of U. In other words: to each curve of type (c} corresponds one of type (b). This
statement is true taking for granted that there are no curves with three or more
critical temperatures, which is supported by our numerical calculations.

Condition (29) is also the sufficient condition for the occurrence of anomalous
temperature dependence when we permit to choose the value of the interaction U
sujtably, ie. U < U,o0,v,} but not too small either. Otherwise no region of
finite-order parameter will be found. Furthermore, condition (29} tells us that there
is a special value of disorder v, = 1/+/2 above which no anomalous temperature
dependence is possible because (29} can no longer be fulfilled. This phenomenon has
already been found in section 4.3

G.3. Critical disorders

The discussion of b(3,,~), for constant temperature, is quite analogous to that of
b(3,4,). It is appropriate to stress the similarity by focusing on b(3,,~) against
/7 rather than on b(3;,~) against -y because ./ is an energy as is 7. The three
generic types of curves b(3;,,~) at constant filling are shown in figure 10. Curve (a)
in figure 10 with U > U_(3,,0) displays one conventional critical disorder ~¢; curve
(c) in figure 10 with U < U.(B,,0) has two critical disorder values onc of which
is conventional, the other anomalous: v > v,. Curve (b) in figure 10 marks the
special case U = U (@,,0). For the conventional critical disorders we again find
b x +/v¢ — 7 and for the anomalous disorder -y, > 0 we have b x /¥ — 7. For
curve (c) in figure 10 with ~, = O we obtain b o /7 which stresses the similarity
between /4 and the temperature T as stated at the beginning of this section. All
these statements follow from the differentiability of 1/U (8,,~) for U, # 0 given
equation (25).

As in the previous section a necessary and sufficient condition for the occurrence
of anomalous behaviour can be given as

k2 1
Y, Ue( B 7)

This is, however, more complicated to evaluate and we do not give its explicit form.
In analogy with the argument in section 6.2, the infinitesimal validity of (30) is globally
extended by the fact that to each curve of type (c) corresponds a curve of type (b) in
figure 10. This observation makes (30) even a sufficient condition for the appearance
of anomalous behaviour at certain values of the interaction U.

After pointing out the similarities between temperature and disorder one
important difference must be emphasized. Whereas there exists a certain disorder
~ above which any temperature anomaly ceases to exist there is no temperature
above which the disorder anomaly will vanish for all fillings. This is shown by the
high-temperature expansion of the divergence strength in appendix A.

> 0. (30)

r=0
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Figure 11. Divergence coefficient F'(#,+) against inverse temperature. The curves do
not intersect. The minimum of each curve is at Ss; and the inverse lemperature Bs: is
given at the intersection of the curve with the asymptote for 8 — oco.

7. Discussion

In this paper we have obtained the exact solution for a model of spinless fermions
with nearest neighbour interaction and local disorder on a Bethe lattice with infinite
coordination number, An essential aspect of this solution is the decomposition of the
self-energy into two separate parts, We have shown, at least in this explicit example,
that the limit of large coordination numbers Z — co makes possible the formulation
of a self-consistent mean-field theory for interacting disordered fermions.

We chose to work on a Bethe lattice for mathematical convenience, Our method
is equally applicable to any lattice which can be generalized to infinite coordination
numbers. The Bethe lattice is bipartite, as i3 the hypercubic lattice. For the one-
particle properties only, the Jocal surrounding of a given site is of importance so that
their differences on the hypercubic and on the Bethe lattice are only quantitative.
Moreover, in the limit Z— co the Bethe lattice has the advantage that its bandwidth
remains finite whereas in the hypercubic case the bandwidth diverges. In spite of
these greatly simplifying features the phase diagram was found to have a significant
unusual structure,

In the model of spinless fermions the homogeneous phase becomes unstable at
a critical interaction and a phase transition occwss. We extensively discussed the
dependence of this transition on the external parameters, ie. interaction strength,
disorder, temperature and filling. Our main findings are the following.

(i) The perfect-nesting singularity is suppressed by disorder and/or temperature.

(ii) The system shows anomalous behaviour away from half filling, ie. the
tendency towards spontaneous symmetry breaking is enhanced by weak disorder
and/or low temperature.

The above phenomena can be explained in terms of static (for disorder) and
dynamic (for temperature) particle-density fluctuations. They drive the system away
from half filling in the former case and bring it closer to half filling in the latter.

Although the model of spinless fermions is considerably simpler than the Hubbard
model, there do exist qualitative similarities between the features of our exact solution
for Z— o0 and those of approximate treatments of the Hubbard model. For example,
using a #2/U expansion Khomskii [34] finds an anomalous temperature behaviour
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regarding the antiferromagnetic phase away from half filling. At half filling the
corresponding order parameter decreases with increasing temperature. In the same
limit Zimanyi and Abrahams [11] noted that the Mott insulating region around half
filling is widened by the effect of disorder on the interaction and that the critical
temperature T, may be increased by disorder. Lee and Ramakrishnan argue that
disorder enhances the effects of the interaction because it renders the electron motion
diffusive [1]. Our model gives a possibility to study the disorder-induced enhancement
quantitatively and in a controlled approximation.

The present treatment can be extended in several directions. While the use of the
Bethe lattice in combination with infinite branching has proved to be very useful for
the calculation of one-particle properties, it is not adequate for the description of two-
particle properties such as transport coeflicients and requires a suitable generalization.
This problem and its possible solution will be the subject of subsequent publication
in which the role of diffusive motion as proposed by Lee and Ramakrishnan [1] will
also be investigated.

Since the mean-field theory is controlled by the small expansion parameter
1/Z it can be extended by including seli-consistent 1/Z corrections. The effects
of quantum mechanical fluctuations on the phase transition, the phenomenon of
Anderson localization and the influence of interaction on it, and so on, should then
be accessible, As a first step, however, the separate problems, ie. disorder or
interaction, must be solved with 1/2Z corrections.
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Appendix A.

In this appendix we discuss the temperatures T, Tg,, the disorder v and the fillings
nﬁ('y), nx(3), introduced in section 4.3. All critical interaction curves in figure §
and figure 6 diverge at the empty band limit with U, o« n=!. This can be seen from
equation-(20). Expansion of n(3,~) and [U ﬁ,q«)]“l at the appropriate u gives the
same leading coefficient.

From figure 7 we learn that, for increasing temperature and/or disorder, nﬁ(’f)
and n](B) approach zero. The quantities 85 = Ty', By, = T3' and v, are
therefore determined by the behaviour of the system at low filling. This observation
makes it possible to expand (20) around u = —2/y + 1 for 8 = oo and around

p - =00 for 8 < co. Since U, «« n~! it is helpful to introduce the ‘divergence
coefficient’ F'(3,~) as: ' '

F(8,7) = n(8,7)U(B,7). (A])
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This quantity is plotted in figure 7. Asymptotic expansion gives

F(B.7) = { 2/(v + P11+ 3129 - D/VA+ 0BT +0(87)) B0
!‘Y) . 172 14 . 6 -

(/B + 36 + 541~ 67) + O(8)] g—0.

(A2)

Expansion at zero temperature gives F(co,~) = 2(~+ 1)~3/2 which is in accordance
with (A2). In figure 11 F(3,v) is plotted against B for several values of the
disorder, It is important to recognize that the curves in figure 11 do not intersect.
For temperatures 1 < 3 < 10 this is seen directly from figure 1i; for high
temperatures, we obtain from (A2) Tlﬁ-;u = —&8° < 0 and for low/zero

temperatures 55j, = —3(y + 1)~ -5/ < 0. This implies that, in the limit of

low filling %%In-.u < 0, whereas %%lml 42 > 0. Thus there must be at least one
intersection between each U(3,v,) and U(B,+,) where v, # «,, and so there
exists no temperature analog to -y, This is valid at all temperatures.

From figure 11 one can also extract information regarding S, and 3g,. Both are
mdlcated (figure 11) for zero disorder, and can be found from F{(3g,~v) = F(oo,v)
and £ ( Bs,>7v) = 0, respectively. This leads to

/2 (\/W" [(7 = Dow? — 477} — 4w
T+1

(7 — Dw? ~ 42 ) 4(v+1) - w? exp(-Fgw) =0

(A3)
from which 35, can be extracted and
24/ v+1
/ de [ZV'Y'*' 112(2.832\/7'*‘1)+WI1(24332\/‘m)]
_2m
Syt 1) - eXP( Bgyw) =0 (Ad)

(v—l)w — 4yl

from which 8, can be determined. Here I, and 7, are Bessel functions [32].

It remains to alculate -+, the disorder strength above which the anomalous
temperature behaviour ceases to exist. This is the case when Sg, — oo. Thus v, is
defined as

, SF(Byyyp) _
Jim 5 =0. (43)

To find the corresponding disorder we make use of (AZ) and find v, = —\/_ The
same result can be obtained for general filling as shown in section 6.2.
Appendix B.

To find the critical behaviour of the order parameter in section 6 the derivatives of the
Green function g; must be calculated. Here we give the results for the corresponding
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densities p{™(w)

1

pL{w) = =+ ) 41+ 9) - w? T | (Bla)
— 2
o (w) = —%j;:ﬂ::;j)ﬂ; (B1b)
@ 5_ 2 WGP+ -4+ ‘
A T I TR Y e e ®l9
pPNw) = oo ( 27yt _ P4
(1= vV + ) — 2 (3 + (1 - y)w?)t (y? + (11— y)w?)?

-+

467 +1
AR E1D

where w € [-24/T+ +,2/1+ v]. The superscript (n) stands for the nth derivative
with respect to A. The densities of (B1) have to be integrated to give the functions
which enter in (24). To this end we define

—2yf Iy

RO ) = [ e A7) B2)

Once we know p}_“)( u) and R(™)(y) the functions

2o (5,0) = oy (4) (B3a)
om0 = RO () (B3b)
%C(#,O) = 6k (B3c)
62

5701, 0) = 1RO () (B3d)

for 7 = oo are given.
The factor % in the last equation arises from the Taylor series expansion. For
completeness we also state the explicit forms of R(®(x) and R (u):

1 4(1 4 ) — p2
@) = L AV 4 ) = o
P = =5 49 + (1 - y)u?

ROy = VT2 R P

e G e s T

(B4a)

+22 7 ) o , (B4b)
@+ (1= 7)aP
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where

(1/20)I[(2+ B)/(2—h)] ~<1

Hy(p,v) =4 3 =1 (B5a)
(1/h) tan=(4h) v 1
hi= /Il = A1+ 7) - 2). (BSb)

In principle (B3) also provides the necessary information for the calculation of
the corresponding functions at finite temperature. To obtain finite-temperature results
the right-hand sides of (B3) have to be convoluted with the temperature peak, ie.
the negative derivative of the Fermi function. Thus it is not straightforward to obtain

z = . . . . s
%;C(n,o) at finite temperatures since several convolutions are involved. Yet it is
L
easy to compute ;2 C(n,0) at zero temperature (§ = oo):

& ~ _ VAT ) -2 247 -1
o 00 = Yy P (st + sl

4 2 4
4 N+ 3y 8 Y )
- 2 B
O (P o) A oy P P 9
and for v = 1 we find
9 _ (B2 2
pazC(m0) = ———5— (1+37) - ®B7)

Note the divergence of 2;C(n,0) at p =0, = O and T = 0. The sign of
;T’ﬁ(n,m is important: it should be negative for the expansion to be meaningful.
For v = 1 this is clear from (B7). For the other values of disorder v > 0 and

chemical potential p € (—2+/14 +,2/1+ +) at zero temperature this.can be shown
rigorously by using the inequalities

1 I+ 1 1

1 1 1 1

. . . i o~ .
For finite temperatures we verified numerically that 3% C(n,0) has the correct sign
and does not vanish.
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